89,821 research outputs found

    Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes.

    Get PDF
    This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies

    Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes.

    Get PDF
    This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies

    The Coupled Motion of Containers and their Sloshing Liquid Loads

    Get PDF

    Waltz User Manual

    Get PDF
    This Document describes relevant information to understand and control the Waltz Visualization System. Waltz is a tool to visualize three dimensional data and reads special reference files containing details of the data file, path name, dimensions and aspect ratios of the data. Waltz (as the name suggests) contains three parts: Generalization, Specialization and Abstraction. The Generalization Process splits the data into spatially connected groups. A specialization is formed from a subset (selection) of these groups. The results are displayed in multiple abstract views of the same data. These abstractions are formed by losing or augmenting the data to facilitate in the understanding of the data

    Sticky Pixels: Evolutionary Growth by Random Drop Ballistic Aggregation

    Get PDF
    Over the years many techniques have been developed for simulating and modelling trees, ferns, crystals and natural structures. Indeed, many complex and realistic images have been formed. Often, these rely on rule based systems to create the structure, they start with a simple form and progressively refine it into a more complex form by applying rules. We use the notion of Sticky Pixels to form textures. The pixels (or objects) move around the space, when they touch another object they stick together to form a larger cluster. The objects aggregate and stop at the place and position where they first touched. Such an aggregation generates neighbourhoods of pixels that form natural looking shapes. The pixels may randomly walk around (such as using Brownian motion), or be guided along pre-defined routes (often described as ballistic), to obtain different structures. We use a ballistic aggregation technique, where the particles are randomly dropped onto a canvas, migrate and stick onto the closest position of the nearest cluster. We present Sticky Pixels, explain different parameters and describe our algorithm

    An Overview of Rendering from Volume Data --- including Surface and Volume Rendering

    Get PDF
    Volume rendering is a title often ambiguously used in science. One meaning often quoted is: `to render any three volume dimensional data set'; however, within this categorisation `surface rendering'' is contained. Surface rendering is a technique for visualising a geometric representation of a surface from a three dimensional volume data set. A more correct definition of Volume Rendering would only incorporate the direct visualisation of volumes, without the use of intermediate surface geometry representations. Hence we state: `Volume Rendering is the Direct Visualisation of any three dimensional Volume data set; without the use of an intermediate geometric representation for isosurfaces'; `Surface Rendering is the Visualisation of a surface, from a geometric approximation of an isosurface, within a Volume data set'; where an isosurface is a surface formed from a cross connection of data points, within a volume, of equal value or density. This paper is an overview of both Surface Rendering and Volume Rendering techniques. Surface Rendering mainly consists of contouring lines over data points and triangulations between contours. Volume rendering methods consist of ray casting techniques that allow the ray to be cast from the viewing plane into the object and the transparency, opacity and colour calculated for each cell; the rays are often cast until an opaque object is `hit' or the ray exits the volume

    Foreward

    Get PDF
    • …
    corecore